

Upregulation of phase II enzymes through phytochemical activation (Protandim) of Nrf2 protects cardiomyocytes against oxidant stress.

- Department of Health and Exercise Science, Colorado State University
- Cardiovascular Pulmonary Research Group, Division of Cardiology, School of Medicine, University of Colorado at Denver Health Science Center
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver Anschutz Medical Campus

Abstract Summary

Increased production of reactive oxygen species (cellular free radicals) has been implicated in the pathogenesis of **cardiovascular disease (CVD)**, and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (**Nrf2**) is a transcriptional regulator of phase II antioxidant enzymes, and activation of **Nrf2** has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination (**Protandim**) of five widely studied medicinal plants derived from botanical sources has been shown to activate **Nrf2** and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as **Protandim**, activates **Nrf2**, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a **Nrf2**-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment (**Protandim**) was associated with nuclear accumulation of **Nrf2**, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis.

The protection against oxidant stress was abolished when **Nrf2** was silenced by shRNA, suggesting that our phytochemical treatment (**Protandim**) worked through the **Nrf2 pathway**. Interestingly, phytochemical treatment (**Protandim**) was found to be a more robust activator of **Nrf2** than oxidant treatment, supporting the use of the phytochemicals (**Protandim**) as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge.